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Abstract

Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various
radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease
discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and
components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been
defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based
phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for
discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since
deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more
difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial
clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision
support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision
making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow
radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision
medicine.
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Advances in both imaging and computers have synergisti-
cally led to a rapid rise in the potential use of artificial in-
telligence in various radiological imaging tasks, such as risk
assessment, detection, diagnosis, prognosis, and therapy
response, as well as in multi-omics disease discovery.
Although computer-aided detection (CADe) has been
proposed, developed, and clinically used since 1966, espe-
cially in thoracic and breast imaging [1-5], the widespread
progress in multiple clinical decision-making tasks and
multiple disease sites has only advanced in the past decades
with the corresponding access to large computational re-
sources, including computer power, storage, and digital
imaging, as well as increased electronic access to information
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at the time of interpretation (eg, clinical history, laboratory
data, prior examinations).

A brief overview of the field is given here, allowing the
reader to recognize the terminology, the various subfields,
and components of machine learning, as well as the clinical
potential. Figure 1 shows the number of publication
counts in PubMed for searches on computer-aided diag-
nosis (CADx) in radiology, machine learning, and deep
learning from 1972 to middle of 2017. Note that in each
of these areas, there are numerous review publications;
however, the aim of this article is to elucidate the concepts
and generalities. The range in presentation of various subtle
disease states, the need for large annotated clinical data sets,
and the complex structure of many machine learning
methods signify much need for continued research and
development before full clinical incorporation and use.
CADe, CADx, AND DECISION SUPPORT
Medical image interpretation is the main undertaking of
radiologists, with the tasks requiring both good image
quality and good image interpretation. Image interpretation
by humans is limited by the presence of structure noise
(camouflaging normal anatomical background), incomplete
ª 2018 Published by Elsevier Inc. on behalf of American College of Radiology
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Fig 1. Number of paper counts in PubMed for searches on
computer-aided diagnosis in radiology, machine learning, and
deep learning from 1972 to middle of 2017.
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Fig 2. Schematic flowchart of a computerized tumor pheno-
typing system for breast cancers on DCE-MRI. The computer
aided diagnosis (CAD) radiomics pipeline includes computer
segmentation of the tumor from the local parenchyma and
computer-extraction of “handcrafted” radiomic features
covering six phenotypic categories: (1) size (measuring tumor
dimensions), (2) shape (quantifying the 3-D geometry), (3)
morphology (characterizing tumor margin), (4) enhancement
texture (describing the heterogeneity within the texture of the
contrast uptake in the tumor on the first postcontrast MRIs),
(5) kinetic curve assessment (describing the shape of the ki-
visual search patterns, fatigue, distractions, the assessment of
subtle or complex disease states, vast amounts of image data,
and the physical quality of the image itself.

CADe and CADx have been under development for
decades [1-5]. In fact, CADe systems have already been
commercialized and have been in clinical use since the
turn of the century [6]. In addition, over the past few
decades, various investigators have been developing
image analysis methods for CADx, such as the
computer-assisted quantitative characterization of breast
lesions on clinical images, as well as in the assessment of
cancer risk [4].

There is no one-size-fits-all when it comes to com-
puter algorithms and specific radiological interpretation
tasks. Each computerized image analysis method requires
customizations specific to the task as well as the imaging
modality. For example, in breast cancer risk assessment,
computer-extracted characteristics of breast density or
breast parenchymal pattern are computed and related to
breast cancer risk factors [7-12]. CADe methods involve a
localization task and serve as a second opinion to
radiologists in their task of finding suspicious regions
within images, as in screening mammograms, leaving
subsequent patient management decisions to the
radiologist. CADx involves the characterization of a
region or tumor, initially indicated by either a
radiologist or a computer, after which the computer
characterizes the suspicious region or lesion or estimates
its probability of disease, again leaving the patient
management to the physician [4].
netic curve and assessing the physiologic process of the uptake
and washout of the contrast agent in the tumor during the
dynamic imaging series, and (6) enhancement-variance kinetics
(characterizing the time course of the spatial variance of the
enhancement within the tumor) [16-21]. CAD ¼ computer-
aided diagnosis; DCE-MRI ¼ dynamic contrast-enhanced MRI.
RADIOMICS AND IMAGING GENOMICS
(RADIOGENOMICS)
Effective diagnosis and treatment of disease rely on the
integration of information from multiple patient tests
Journal of the American College of Radiology
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involving clinical, molecular, imaging, and genomic data
(ie, various “-omics”). Radiomics, an expansion of CADx,
has been defined as the conversion of images to minable
data [13-15]. Obtaining radiomic data may involve
computer segmentation of a tumor from its background
followed by computer extraction of various tumor
features. The ultimate benefit of quantitative radiomics
is to (1) yield predictive image-based phenotypes of dis-
ease for precision medicine or (2) yield quantitative
image-based phenotypes for data mining with other
-omics for discovery (ie, imaging genomics).

Radiomic features can be described as handcrafted or
engineered, with intuitive features or deep-learned fea-
tures. In this section, the focus is on handcrafted features
for which computer algorithms are developed based on
some analytical feature-extraction approach, such as
the calculation of geometric shape of a tumor. For
example, Figure 2 demonstrates a computer-aided design
or radiomics pipeline for the computer extraction of
various characteristics of breast tumors on dynamic
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contrast-enhanced MRI [22,23]. After the tumor is
delineated from the parenchymal background (ie,
computer segmentation), the various radiomic features
are calculated. The number of radiomics publications
highlighting the role of quantitative imaging biomarkers
is dramatically increasing with the focus going beyond
CADx [4,13].

A major focus of radiomics is cancer. Cancers are
spatially heterogeneous, and currently, many imaging
biomarkers of cancerous tumors include only size and
simple enhancement measures (if dynamic imaging is
employed). Various genomic studies have demonstrated
the heterogeneity of primary breast cancer tumors [24].
With radiomics, the goal is to obtain image-based phe-
notypes of the cancerous tumor including size, shape,
margin morphology, enhancement texture, kinetics, and
variance kinetic phenotypes. For example, enhancement
texture phenotypes characterize the tumor texture pattern
of contrast-enhanced tumors on the first postcontrast
images and thus quantitatively characterize the hetero-
geneous nature of contrast uptake within the breast tu-
mor [16,17,23]. For example, the larger the enhancement
texture entropy, the more heterogeneous the pattern
within the tumor, potentially reflecting the
heterogeneous nature of angiogenesis and treatment
susceptibility, serving as a location-specific “virtual digi-
tal biopsy.”

A major gap in breast cancer research is the elucida-
tion of the relationship between the macroscopic
appearance of the tumor and its environment and bio-
logic indicators of risk, prognosis, or treatment response.
Imaging genomics (ie, “radiogenomics”) aims to find
relationships between imaging data and clinical data,
molecular data, genomic data, and outcome data [25-28].
During this “discovery stage,” the goal is identify
associated radiomic features for later application in
developing predictive models for use in risk assessment,
screening, detection, diagnosis, prognosis, therapeutic
response, risk of recurrence, and so on.

Basically, tumors are different, so can imaging capture
the phenotypic differences and the heterogeneity within?
Is it possible to decide targeted therapy based on imaging
genomics association results? Can imaging features
inform important genomics features? Can integration of
imaging and genomics features lead to higher power in
prediction? Can imaging serve as a virtual digital biopsy,
because it is noninvasive, covers complete tumor, and is
repeatable? It is important to note that the intention is
not to use radiomics to replace conventional biopsies
and genetic testing; however, from imaging genomics
514
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association studies, the aim is to ultimately understand
the relationships between the image-based phenotypes
and genetics, and bring imaging findings earlier into
screening and treatment regimens to potentially avoid
serial biopsies and provide virtual biopsies when actual
biopsies are not practical.

These goals are to be achieved using image data from
routine clinical imaging examinations. However, for
radiomics to progress in biomedical discovery and clinical
prediction, sufficient harmonization is necessary for
clinical translation in terms of reproducibility and
repeatability. Thus, studies have been conducted with
focus on robustness of the imaging systems or robustness
of the radiomic features. Various initiatives have focused
on the aspects of quantitative and robustness, including
those of the Quantitative Imaging Network of the Na-
tional Cancer Institute [29] and the Quantitative Imaging
Biomarker Alliance of the RSNA [30].

With such methods, investigators are phenotypically
characterizing solid tumors to gain image-based infor-
mation on the underlying genetic makeup. For example,
in a multi-institutional National Cancer Institute
collaboration, which used de-identified data sets of
invasive breast carcinomas from The Cancer Genome
Atlas and The Cancer Imaging Archive [31,32] the
relationships between computer-extracted radiomic MRI
tumor features and various clinical, molecular, and ge-
nomics markers of prognosis and risk of recurrence,
including gene expression profiles, were investigated
[23,27,28,33,34]. Statistically significant associations
were seen between quantitative MRI radiomic features
and various clinical, molecular, and genomic features in
breast invasive carcinoma. Promising significant trends
were observed between enhancement texture (entropy)
and molecular subtypes (normal-like, luminal A,
luminal B, HER2-enriched, basal-like), even after con-
trolling for tumor size. Also discovered were some highly
specific imaging-genomic associations, which may be
potentially useful in (1) imaging-based diagnoses that can
inform the genetic progress of tumor and (2) discovery of
genetic mechanisms that regulate the development of
tumor phenotypes. The authors noted that the computer-
extracted MRI phenotypes show promise for high-
throughput discrimination of breast cancer subtypes,
which may yield a quantitative predictive signature for
assessing prognosis.

In another example, a group characterized lung tu-
mors on CT through a radiomic analysis of 440 features
quantifying tumor image intensity, shape, and texture
from 1,019 patients with lung or head-and-neck cancer
Journal of the American College of Radiology
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[35]. Using an independent data set, many of the
radiomic features were shown to have prognostic power.
The imaging-genomics association study noted that a
prognostic radiomic signature, characterizing tumor het-
erogeneity, seemed associated with underlying gene-
expression patterns. Figure 3 shows radiomics heat map
from the unsupervised clustering of lung cancer patients
and radiomic feature expression that revealed clusters of
patients with similar radiomic expression patterns.

Radiomics also allows for the use of computer-
extracted lesion features as image-based biomarkers
(image-based phenotypes) in predicting a patient’s
response to a particular therapeutic treatment. For
example, the functional tumor volume from breast MRI
has been shown to a predictor of recurrence-free survival
Fig 3. Radiomics heat map. (a) Unsupervised clustering of lung c
feature expression (n.440) on the x axis revealed clusters of pati
patient parameters for showing significant association of the radi
Po1_10_20, w2 test), overall stage (P.3.4_10_3, w2 test), and histo
groups with the clustered expression patterns. Reprinted with pe
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of patients undergoing neoadjuvant therapy in an evalu-
ation using data from an ACRIN study [36].
MACHINE LEARNING
Computer-extracted (radiomic) features can serve as input
to machine learning algorithms (ie, computer algorithms
that “learn” a specific task given specific input data). With
such machine learning methods, multiple radiomic fea-
tures are merged into a single value, such as a tumor
signature, which might be related to the likelihood of
disease state (eg, see Clark et al [32]).

Various machine learning techniques have been
applied across the decades, for example, linear discrimi-
nant analysis, support vector machines, decision trees and
ancer patients (Lung1 set, n.422) on the y axis and radiomic
ents with similar radiomic expression patterns. (b) Clinical
omic expression patterns with primary tumor stage (T-stage;
logy (P.0.019, w2 test). (c) Correspondence of radiomic feature
rmission [35].
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Fig 4. Examples of DCE-MRI transverse center slices with the corresponding regions of interest (ROIs) extracted. On the left is a
benign case and on the right is a malignant case. These extracted ROIs are then input to a CNN for transfer learning.
DCE ¼ dynamic contrast-enhanced MRI. (Reprinted with permission [37])
random forests, and neural networks. Reviews of machine
learning have been written over the past many years
including those that serve as tutorials to new investigators
into the field [15,38].

Given the ever-increasing variations of computer-
extracted features, both handcrafted and deep-learned,
appropriate feature selection techniques are important.
Various studies have been conducted in which in-
vestigators, using moderately large data sets, have evalu-
ated the combination of feature selection and
classification methods [39-41]. Such analyses have taken
into account both performance (such as the area under
the receiver operating characteristic curve for a
particular clinical task) and variability as a way to
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identify the optimal signature. That is, a computer-
derived tumor signature needs to both perform well in
its specific task and be generalizable across cases.
DEEP LEARNING
Deep learning is a subcategory of machine learning in
which multiple-layered networks are used to assess com-
plex patterns within the raw imaging input data. Most
recently, deep learning has been conducted using deep
convolutional neural networks (CNNs). Just as radiolo-
gists learn, during residency and beyond, by repeatedly
correlating their visual interpretation of radiological images
to actual clinical truth, so can machines. Although CNNs
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Fig 6. A diagonal classifier agreement plot between a con-
volutional neural network (CNN)-based classifier and a con-
ventional computer-aided diagnosis (CADx) classifier for
FFDM in the diagnostic task of estimating the probability of
malignancy. The x axis denotes the output from the CNN-
based classifier, and the y axis denotes the output from the
conventional CADx classifier. Each point represents a region of
interest (ROI) for which predictions were made. Points near or
along the diagonal from bottom left to top right indicate high
classifier agreement; points far from the diagonal indicate low
agreement. ROI pictures of extreme examples of agreement
and disagreement are included [37]. FFDM ¼ full field digital
mammography (Reprinted with permission [37])
have been used in CADe for decades, advances in com-
puters have allowed for a dramatic increase in the number
of layers within the CNN, thus resulting in the term deep.
Fig 7. Receiver operating characteristic curves showing statistically
lesions on FFDM, ultrasound, and breast MRI when output from c
area under the curve; CAD, computer-aided diagnosis; CNN, conv
MRI; FFDM ¼ full field digital mammography; US ¼ ultrasound.
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A comprehensive technical review of deep learning in
medical image analysis is given by Shen et al [43].

Possibly the earliest journal publication of CNNs in
medical imaging was in 1994 and was for the computerized
detection of microcalcifications in mammography [44]. In
that work, a CNN was trained to create filters within a
shift-invariant artificial neural network, enabling the
enhancement of microcalcifications for further analyses
within a CADe system [44]. Other early uses of CNNs
include a study of their use in the classification of biopsy-
proven masses and normal tissue on mammograms [45].

Advances in recent years in deep learning have been
quite noteworthy, with CNNs seeing great success in
many benchmark image classification tasks [46-48].
However, to be trained, CNNs require very large and
correctly labeled data sets, as well as substantial
computational resources. Thus, implementation of deep
learning in medical decision making is occurring
through use of pretrained CNNs (ie, “transfer
learning”—with and without “fine-tuning”). Many
developments have been published demonstrating the
role of transfer learning in radiology. Basically, training
CNNs “from scratch” is often not possible for CAD
and other medical image interpretation tasks. However,
generic features can be transferred from an already-
trained CNNs (ie, pretrained; eg, a CNN trained on
natural scenes) to serve as features for input to classifiers
focused on a medical imaging task. This process is known
as transfer learning [49-52]. For example, the use of “off-
the-shelf” CNNs pretrained on everyday objects, such as
cats and dogs, can be used to characterize tumors on
breast images [37,42] transferring knowledge from
general object recognition tasks to medical imaging
significant improvement in diagnostic classification of breast
onventional CADx and deep learning are combined [37]. AUC,
olutional neural network; DCE ¼ dynamic contrast-enhanced
Reprinted with permission [37].
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classification tasks. In addition, fine-tuning of trained
CNNs is occurring in which investigators use only a
portion of a CNN trained for a different task and retrain
the later layers of a CNN specifically for new task. These
methods allow for harnessing the predictive power of
deep neural networks without the need for extremely
large data set or computational cost requirements.

For example, transfer learning has been successfully
used in the diagnosis of breast tumors on mammog-
raphy, ultrasound, and breast MRI [37,42]. In a breast
imaging CADx system, deep neural networks with
transfer learning were used, and specific layers of the
CNN served as features for subsequent classifiers.
Three scenarios were evaluated: a CADx system with
computer-extracted handcrafted features, a CADx sys-
tem with CNN-extracted features, and an ensemble
classifier trained on both types of features. Across all
three breast imaging modalities, the ensemble classifier
performed best, indicating the potential for the
complementary use of both handcrafted and deep-
learned tumor features in medical decision making
(Figs. 4, 5, 6, 7).

CNNs have been investigated for multiple tasks
including the detection of colonic polyps on CT colo-
nography as shown in Figure 1 of reference [53] and
detecting patterns of interstitial lung disease on CT [54].

In another example, a CNN for detection was trained
on digital mammography but then transfer learning was
conducted to allow the image patterns learned from
mammograms to be transferred to the analysis of breast
tomosynthesis images, indicating the ability to transfer
between radiological modalities [55].

Although deep learning allows for computers to learn
directly from image data, for each clinical task, millions of
images are needed for CNNs to be trained “from
scratch.” Such an example is that of detection of diabetic
retinopathy in retinal fundus photographs [56].
DISCUSSION AND SUMMARY
Although many machine learning imaging publications
are presented and published each year, there are still only
a few methods that are able to handle the vast range of
radiological presentations of subtle disease states. For
example, the use of CNNs to distinguish trabecular bone
structure or interstitial lung diseases involves subtle
changes in texture-type patterns, which are quite different
from everyday photos of cats and dogs.

The use of deep learning terminology has also caused
concern in the use of a “black box” for medical tasks;
518

Downloaded for Anonymous User (n/a) at Children's National Medical C
For personal use only. No other uses without permission. C
however, there are methods to assess the learned param-
eters within a CNN to understand its decision-making
focus and methodology.

In the future, to cover the entirety of radiology,
there are challenges and potential pitfalls. For deep
learning in radiology to succeed, recall that appropri-
ately annotated large data sets are needed, deep net-
works are complex, computer software and hardware are
evolving constantly, and subtle differences in disease
states are more difficult to perceive than differences in
everyday objects.

However, in the future, machine learning in radiology
is expected to have a substantial clinical impact with
imaging examinations being routinely obtained in clinical
practice, providing an opportunity to improve decision
support in medical image interpretation. The term of
note is decision support, indicating that computers will
augment human decision making, making it more
effective and efficient. The clinical impact of having
computers in the routine clinical practice may allow ra-
diologists to further integrate their knowledge with their
clinical colleagues in other medical specialties and allow
for precision medicine.
e
op
TAKE-HOME POINTS
- Advances in both imaging and computers have
synergistically led to a rapid rise in the potential use
of artificial intelligence in various radiological im-
aging tasks.

- Radiomics, the -omics of images, is an expansion of
CADx.

- Machine learning enables the use of radiomics in
computer-learned tumor signatures.

- Deep learning, a subcategory of machine learning,
allows computers to learn directly from image data;
however, for each clinical task, millions of images
are expected to be needed for CNNs to be trained
“from scratch.”

- Although many machine learning imaging publi-
cations are presented and published each year, there
are still only a few methods that are able to handle
the vast range of radiological presentations of subtle
disease states. The range in presentation of various
subtle disease states, the needs for large annotated
clinical data sets, and the complex structure of many
machine learning methods signify much need for
continued research and development before full
clinical incorporation and use.
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